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Abstract

The problem of continuous linear time varying consensus

dynamics is addressed in the presence of constant commu-

nication delays. We make a Fixed Point Theory argument

with the use of contraction mappings and we state sufficient

conditions for exponential convergence to a consensus value

with prescribed convergence rate.

1 Introduction

Distributed computation and multi agent dynamics is
one of the most prominent and active research area in
the control community in the past years.

It was initiated by the seminal work of Tsitsiklis [14]
and the subject was significantly reheated with the work
of Jadbabaie et al. [5]. Since then, an enormous amount
of works has been produced from different fields of
Applied Science (Engineering, Phsysics, Mathematics)
concerning types of coordination among autonomous
agents who exchange information in a distributed way in
many frameworks (e.g. deterministic or stochastic) and
under various communication conditions (for example
[8, 7, 4, 6, 12, 10, 11, 9] and references therein).

All of the proposed models are mainly based on a
specific type of dynamic evolution of the agents’ states
known as consensus schemes. Each agent evolves it’s
state by some specific type of averaging of the states
of it’s ’neighbours’. So long as certain connectivity
conditions hold, all agents will eventually converge to
a common value.

In this work, we revisit the linear time varying
(LTV) consensus model in the presence of bounded com-
munication delays. We prove exponential convergence
of the autonomous agents to a common value under con-
ditions related to the topology of the communication
graph, the nature of the time-varying weights, the max-
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imum allowed delay and the rate of convergence of the
undelayed system. Our approach differs from that of the
vast majority of the works in the literature which use
a Luapunov based approach. Here, we develop a Fixed
Point Argument on an especially designed topological
space.

1.1 Model and related literature Consider a fi-
nite number of agents [N ] = {1, . . . , N}. The model we
will discuss is of the type
(MDL)

ẋi(t) =
∑
j

aij(t)(xj(t− τ)− xi(t)), i, j = 1, . . . , N

Each agent evolves according to the dynamics of it’s own
state as well as a retarded measurement of the states of
it’s neighbouring agents. Surprisingly enough compared
to other and more complex models, this model has
not received that much attention. To the best of our
knowledge we mention four relative works.

A first example was proposed and discussed in [11].
The authors introduced and analysed the LTI system

ẋi(t) =
∑
j

aij(xj(t− τ)− xi(t− τ))

with τ > 0 constant and uniform for all agents, using
a frequency method approach. The problem with this
method is that it is over simplistic and cannot be
generalized in case the weights are time varying or the
delays are incommensurate.

In [1] the authors consider a discrete time version
of (MDL) with, in fact, time varying delays τ = τ(t).
On condition that the delay is uniformly bounded from
above, the strategy of attacking the problem is to extend
the state space by adding artificial agents. This method
although applicable for discrete time, it is unclear how
it would work in a continuous time system, unless the
latter one is discretion and solved numerically.

In [12] the authors discuss the synchronization
phenomenon of the non-linear model

ẋi =
∑
j

aijfij(xj(t− τ)− xi)
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using passivity assumptions on fij and applying invari-
ance principles. The main setback of this approach,
however, is that nothing can be said for either the rate of
convergence to the consensus or synchronization space
or the consensus point itself.

Finally, models similar to (MDL) were used in the
so called rendezvous type of algorithms, such as in [10].
The algorithm there is of the form

ṙi(t) = vi(t) v̇i(t) = −cvi(t)+
∑
j

aij(rj(t−τ ji )−ri(t))

and the result was proved using a Lyapunov-Krasovskii
argument on the base that the delayed quantities act
only as perturbations to the main dynamical equation.
This is not the case here though. Moreover, little can
be said about the rate of convergence of this system.

1.2 Organization of the paper. This work is or-
ganized as follows: In section (2) we introduce nota-
tions and recall definitions from the relevant theoretical
frameworks which will be implemented. In section (3)
we introduce the model; we pose and discuss the as-
sumptions and we conclude by stating our main result.
The proof of the main result is carried in section (5).
This work is a collection of results from [13]. Due to
space limitations some proofs or steps in proofs were
omitted.

2 Notations and Definitions

In this section, we describe the notations and definitions
which will be used in this work. By N < ∞ we denote
the number of agents. The set of agents is denoted by
[N ] := {1, . . . , N}. Each agent i ∈ [N ] is associated
with a real quantity xi ∈ R which models it’s state and
it is a function of time.

2.1 Euclidean Spaces The Euclidean vector space
RN frames the state space of the system with vectors
x = (xi, . . . , xN )T . We will endow it with the p = 1

norm ||x|| =
∑N
i=1 |xi| for each x ∈ RN . The induced

norm of a square N ×N matrix A is defined as ||A|| =
sup||x||=1 ||Ax||. By, 1, we denote the column vector of

all ones. The subspace of RN of interest is defined by

∆ = {y ∈ RN : y = 1c, c ∈ R}

and it is called the consensus subspace.

2.2 Algebraic Graph Theory The mathematical
object which will be used to model the communication
structure among the N agents is the weighted directed
graph. This is defined as the triple G = (V,E,W ) where
V is the set of nodes (here [N ]), E is a subset of V ×

V which characterizes the established communication
connections andW is a set associating a positive number
(the weight) with any member of E. So by aij we will
denote the weight in the connection from node j to node
i and this is an amount of the effect that j has on i. If
aij = 0 then (j, i) /∈ E.

In this work, we are interested in directed graphs
with a spanning tree (for a thorough introduction the
reader is refered to [2]).

Given E, each agent i has a neighbourhood of
nodes, to which it is adjacent. We denote by Ni the
subset of V such that (j, i) ∈ E and by |Ni| it’s
cardinality. The connectivity weights for each j ∈ Ni
aij are in this work considered to be time dependent.
The overall network influence to i is measured by the
degree di(t) =

∑
j∈Ni aij(t) A matrix representation of

G is through the adjacency matrix A = [aij ], the degree
matrix D = Diag[di] and the Laplacian L := D − A,
known as the (in-degree) Laplacian. The notation

∑
i,j

stands for
∑N
i=1

∑
j∈Ni and by dt = (d1(t), . . . , dN (t))

the vector of overall degree influence.

2.3 Function Spaces and Fixed Point Theory
We will establish our results on metric spaces. These
are the most common type of abstract topological
spaces, which are of use in applications. The topology
generated in these spaces is through a non-negative
valued function which determines the neighbourhoods
that comprise the topology.

Definition 2.1. A metric space is the pair (M, ρ) of
a set M and a function ρ :M×M→ [0,∞), such that
x, y, z ∈M implies

1 ρ(y, z) ≥ 0, ρ(y, y) = 0, ρ(y, z) = 0⇒ y = z

2 ρ(y, z) = ρ(z, y)

3 ρ(y, z) ≤ ρ(y, x) + ρ(x, z)

In this work, we consider only complete metric spaces.
A metric spaceM is complete if every Cauchy sequence
has a limit in M. Another function space is the space
of absolutely integrable real-valued functions defined in
[a, b], denoted by L1

[a,b].

Now, recall that given two metric spaces (Mi, ρMi
)

for i = 1, 2 an operator P :M1 →M2 is a contraction
if there exists a constant α ∈ (0, 1) such that x1, x2 ∈M
imply

(2.1) ρM2
(Px1, Px2) ≤ αρM1

(x1, x2)

The next celebrated theorem will be used in proving our
main results.
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Theorem 2.1. [Contraction Mapping Principle] Let
(M, ρ) be a complete metric space and P : M → M
a contraction operator. Then there is a unique x ∈ M
with Px = x. Furthermore, if y ∈ M and if {yn} is
defined inductively by y1 = Py and yn+1 = Pyn then
yn → x, the unique fixed point. In particular, the equa-
tion Px = x has one and only one solution.

The proof of the theorem can be found in any advanced
analysis or ordinary differential equations book. We
refer the reader to [3] which is closest to our work.

2.3.1 The space of solutions. The stability prob-
lems we discuss are through contraction mappings and
they are thus formulated in complete metric spaces. Let
us now define this specially constructed space together
with the metric function we will use in order to use The-
orem (2.1).

Given t0 ∈ R , τ > 0, φi(t)|t∈[t0−τ,t0], d > 0,
consider the following space M =M(τ,φ,k,d)

M =
{
y ∈ C([t0 − τ,∞),RN ) : y = φ|[t0−τ,t0],

sup
t≥t0−τ

edt||y(t)− 1ky|| <∞, |ky| <∞
}

(CMS)

This is the space of functions, which take values in
RN , are identical on [t0 − τ, t0] to a prescribed function
and converge to a common constant ky, which depends
on y in a fashion to be analyzed in the following section.
The rate of convergence is exponential with rate d.
Consider also the function ρ :M×M→ [0,∞), defined
by

ρ(y1,y2) = sup
t≥t0

edt
∣∣∣∣[y1(t)− 1ky2

]
−
[
y2(t)− 1ky2

]∣∣∣∣
where ki will be a function of t to be determined.
Finding a solution of our version of (MDL) inM using
Theorem (2.1) is a de facto solution of the problem. The
next result is of essence in applying Theorem 2.1.

Proposition 2.1. [13] The metric space (M, ρ) is
complete.

Proof. [Sketch] Consider the Definition (2.1). The
function ρ readily satisfies almost all of the properties.
It is not hard to see that ρ(y1,y2) = 0 implies

∣∣∣∣[y1(t)−
1ky2

]
−
[
y2(t)−1ky2

]∣∣∣∣ for all t ≥ t0 hence ky1 = ky2 if
one takes t = t0 and the result follows. The same line of
arguments yields that |ky1

−ky2
| is a continuous function

of ρ(y1,y3). Hence, if {yi} is a Cauchy sequence in
(M, ρ), for every ε > 0, and fixed t > 0 there is M > 0
such that for any m,n ≥ K

||ym(t)− yn(t)|| ≤ ||1(km − kn)||+ ρ(ym,yn) < ε

It follows that the vectors yi(t) for a Cauchy sequence
in RN and has a limit there, which is a function of t. In
the same sense ki(t) form a Cauchy sequence in R and
converge to a function of t, as well. It is easy to show
that this convergence is uniform and the limit function is
continuous and bounded for bounded k{y}. Especially
y(t) is also bounded and converges with the same rate
in ∆.

The details of the proof can be found in [13]. In
the following we will clarify the function k(t,y(t)) and
we will show that under mild assumptions it satisfies the
condition of Proposition (2.1) and so does the function ρ
by being is a well-defined metric, according to Definition
(2.1).

3 The model, the assumptions and the
statement of the results

In this section we will introduce the problem, impose the
sufficient Hypotheses, discuss some first remarks and
state the main result.

3.1 Formulation of the Model Given N < ∞,
0 < τ < ∞ , t0 ∈ R and the initial functions φi(t) :
[−τ, 0]→ R|Ni=1, we consider the initial value problem.

ẋi =
∑
j∈Ni

aij(t)(x
τ
j − xi), t ≥ t0

xi(t) = φi(t), t ∈ [t0 − τ, t0]

(IVP)

where xτj := xj(t − τ) and τ is the bounded delay
constant.

We impose the following hypotheses:
[H.1] The transition matrix of the linear system

(LTV) ẋ = −L(t)x , t > t0

is denoted by Φ(t1, t2) where t1, t2 ≥ t0 and satisfies
the following relation: For fixed t0 ∈ R, there exist
γ > 0 (independent of t0), Γ > 0 and c ∈ RN (possibly

dependent on t0) with
∑N
i=1 ci = 1 such that∣∣∣∣Φ(t, t0)− 1cT
∣∣∣∣ ≤ Γe−γ(t−t0)

[H.2] The weights aij(t) : R → R are C1, bounded
functions of time, with uniform bound |aij | ≤ a.
[H.3] There exists β ∈ (0, γ) such that

|ȧij(s)|e−βs ∈ L1
[t0,∞)

[H.4] There exist M > 0 and δ > 0 such that ∀i ∈ [N ] :∣∣∣∣ ∑
j∈Ni

ciaij(t)− cjaji(t)
∣∣∣∣ ≤Me−δt , t > t0

131 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.



[H.5] There exists α ∈ [0, 1) such that

τ
supt≥t0 |c

T (A(t)−A(t0))1|
1 + τcTA(t0)1

< α

Set A = supt≥t0 ||A(t)||, Ȧ = supt≥t0 ||Ȧ(t)||, L =

supt≥t0 ||L(t)||, Ḋ = supt≥t0 ||ḋt||.
[H.6] For fixed d ∈ (β, γ), there exists α ∈ [0, 1) such
that

edτ − 1

d

(
A

[
1 +

M

d+ δ
+

ΓL

γ − d

]
+

ΓȦ

γ − d
+
||c||Ḋ
d

)
≤ α

The imposed hypotheses, although numerous and seem-
ingly restricting are in fact the result of the drop of
symmetry assumptions usually considered in consensus
dynamics. For example we do not consider symmetry
in aij . Moreover very little is actually known about the
weights aij(t). Below, we make a few comments on the
assumptions, reviewing them one by one.

3.1.1 First Remarks. Assumption [H.1] describes
the dynamics of (LTV) and imposes the asymptotic
consensus of the agents at the rate of γ > 0. To simplify
the analysis we assume not failure of connectivity (i.e.
aij > 0 if and only if aij(t) > 0 for some t). In the
discussion of the result we will discuss the possibility
of connectivity failures. The condition

∑
i ci = 1 is

necessary so that ∆ is an (LTV)-invariant subspace.
Assumption [H.2] characterizes the dynamics of the

communication weights. The boundedness of aij is im-
posed as a reasonable assumption based on applications
of the Control & Communication area and as an ex-
pected consideration which makes independent the com-
munication framework from the dynamics. It also fol-
lows that |L| <∞ and we denote this bound by ||L||.

Assumption [H.3] characterizes the dynamics of ȧij
and asks for certain smoothness properties. Although
not very important for the stability results of (LTV),
it seems that under the Fixed Point Theory Approach
these dynamics are important. The assumption is
readily be fulfilled if for instance |ȧij | ∈ L1[t0,∞). In
such case, it is implied that the transmission weights
asymptotically ”freeze”.

Assumption [H.4] is one way to bridge the gap
between c and aij(t). Indeed [H.1] says nothing about
the connection between the weights and the consensus
value. Note that in the case of weight symmetry (i.e.
aij(t) ≡ aji(t)), [H.4] is readily fulfilled and it is thus
obsolete.

Assumption [H.5] is necessary to prove existence
and uniqueness the function k(t). It’s need is due to the
fact that the dynamical system is non-autonomous and

thus constant information of the weights and thus the
solution is needed. This assumption can be significantly
relaxed if the system was autonomous (time-invariant
linear or non-linear) or if it was periodic.

Assumption [H.6] includes two assumptions. The
reasonable one, that the rate of convergence of the (IVP)
cannot be faster than (LTV) and also the crucial condi-
tion so that the solution operator P (to be introduced
below) is a contraction in (M, ρ).

3.1.2 Main Result

Theorem 3.1. Consider the (IVP) and the assump-
tions [H.1] to [H.6]. Then there exists a unique k(t) ∈
C0([t0,∞),R) such that the solution of (IVP) converges
to k(t) in the p = 1 norm, exponentially fast, with rate
d.

4 Preliminary Results

In this section we will state some first results construct-
ing the space M in order to apply Theorem (2.1). The
first observation is on the solutions of (IVP).

All solution of the (IVP) are bounded. So long
as the delay is bounded , we have the following result:

Proposition 4.1. If x(t) is a solution of (IVP) then
|x| ≤ N maxi∈[N ] supt∈[t0−τ,t0] |φi(s)|

Proof. Let q = N maxi supt∈[t0−τ,t0] |φi(s)| and assume
that the condition does not hold. Then there exists a
first time of escape for some i ∈ [N ], say t̄ > 0 such that{

xi(t̄) = q, ẋi(t̄) > 0
}

or
{
xi(t̄) = −q, ẋi(t̄) < 0

}
The first case, for example, yields

ẋi(t̄) =
∑
j∈Ni

aij(t̄)(xj(t̄− τ)− c) ≤ 0

a contradiction. A similar contradiction arises for the
second case.

The result above justifies boundedness of the members
in M which is, however, not necessarily uniformly
bounded.

The function k(t, ·) It is not a hard exercise to see
that under the integrability assumption for the weights
aij(t), (LTV) cannot have a non-trivial periodic solution
(see also [13]). The existence of a consensus point for
(LTV) is imposed in [H.1], (this is 1cTφ(0) ), tells
us nothing about the asymptotic behaviour of (IVP).
The next result is crucial in establishing the existence
and uniqueness of a limit function k(t) to which (IVP)
converges.

132 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.



Definition 4.1. Given y ∈M, we define the following
function

k(t) =



cTφ(t0)+cTA(t0)
∫ t
t0−τ y(s)ds

1+cTA(t0)1(t−t0+τ) ,

t0 − τ ≤ t ≤ t0
cTφ(t0)+cT

∫ t
t0
Ȧ(s)

∫ s
s−τ [y(w)−1k(w)]dwds

1+τcTA(t0)1
,

t ≥ t0

At first, observe that the integral in the second branch
is a well defined for all t in view of [H.3], together with
the denominator in view of [H.5]. This implies that
the integral converges in R and there are no oscillatory
phenomena. Next, for any fixed t ≥ t0 we effectively
deal with a non-linear equation in k the well-posedness
of the solution of which, is not readily guaranteed.

Lemma 4.1. [13] Assume t0 ∈ R , τ > 0, c ∈ RN and
aij(t) : [t0,∞) → R+ satisfying [H.2], [H.5]. Define the
operator Q : C([t0 − τ,∞),RN )× R+ × R→ R

Q(y, t, k) =
cTφ(t0)

1 + τcTA(t0)1
+

+
cT
∫ t
t0
Ȧ(s)

∫ s
s−τ [y(w)− 1k(w)]dwds

1 + τcTA(t0)1

Under the assumption [H.5], for any fixed t ≥ t0 , y ∈ C,
there exists a unique k such that

Q(y, t, k) = k

Proof. [Sketch] Consider the complete metric space
(R, | · |) and prove that Q is a contraction in (R, | · |) with
respect to k. To do this one needs hypothesis [H.5].

5 Time Varying Weights and Constant delays

We restate the initial value problem and recall the
assumptions [H.−]

ẋi =
∑
j∈Ni

aij(t)(x
τ
j − xi), t ≥ t0

xi(t) = φi(t), t ∈ [t0 − τ, t0]

(IVP)

In vector form the equation is written as

ẋ(t) = −L(t)x(t)−A(t)
d

dt

∫ t

t−τ
x(s)ds(5.2)

The general solution is

x(t) = Φ(t, t0)φ(t0)−
∫ t

t0

Φ(t, s)A(s)
d

ds

∫ s

s−τ
x(w)dwds

(5.3)

and using integration by parts and the fundamental
properties of Φ(t, s) it reads:

x(t) = Φ(t, t0)

(
x(t0) +A(t0)

∫ t0

t0−τ
φ(s)ds

)
−

−A(t)

∫ t

t−τ
x(s)ds+

∫ t

t0

Φ(t, s)L(s)A(s)

∫ s

s−τ
x(w)dwds

+

∫ t

t0

Φ(t, s)Ȧ(s)

∫ s

s−τ
x(w)dwds

(5.4)

Consider the metric space (M, ρd) defined in (CMS).
Define the operator P by
(5.5)

(Px)(t) :=



φ(t), t0 − τ ≤ t ≤ t0
Φ(t, t0)

(
x(t0) +A(t0)

∫ t0
t0−τ φ(s)ds

)
−

−A(t)
∫ t
t−τ x(s)ds+

+
∫ t
t0

Φ(t, s)L(s)A(s)
∫ s
s−τ x(w)dwds+

+
∫ t
t0

Φ(t, s)Ȧ(s)
∫ s
s−τ x(w)dwds,

t > t0

Remark 1. The operator P is obviously continuous
in t and it is the solution expression of (5.2) and it
equivalent both to (5.3) and (5.4). While (5.3) will be
used for determining the consensus point, (5.4) will be
used for proving that the operator is a contraction.

The next proposition shows that for any member of the
spaceM, (Px)(t) is a function that converges to ∆ and
in particular, in 1kx.

Proposition 5.1. Given x ∈M with 1kx, it holds that

sup
t≥t0

edt||(Px)(t)− 1kx|| <∞

if d ∈ (β, γ).

Proof. At first, we show that

(5.6) lim
t

(Px)(t) = 1kx ⇒ k(Px) = kx

For x ∈M from (5.4) we have

(Px)(t) =Φ(t, t0)x(t0)

−
∫ t

t0

(Φ(t, s)− 1cT )A(s)
d

ds

∫ s

s−τ
x(w)dwds−

− 1

∫ t

t0

cTA(s)
d

ds

∫ s

s−τ
x(w)dwds

As t → ∞, the first term converges to 1(cTφ(t0)), the
second term goes to zero since it’s norm is bounded
above by a convolution of an L1[t0,∞) function (that is
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Φ(t, s)−1cT ) with a function that goes to zero. Finally,
the third term reads:

1cTw(s) = 1

( N∑
i=1

ci
∑
j∈Ni

aij(s)
d

ds

∫ s

s−τ
xj(w)dw

)

for (j, i) ∈ E, as t→∞∫ ∞
t0

aij(s)
d

ds

∫ s

s−τ
xj(w)dw =

=

∫ ∞
t0

aij(s)
d

ds

∫ s

s−τ
(xj(w)− kx)dw =

− aij(t0)

∫ t0

t0−τ
(φj(w)− kx)dw

−
∫ ∞
t0

ȧij(s)

∫ s

s−τ
(xj(w)− kx)dwds

the integral∫ ∞
t0

ȧij(s)

∫ s

s−τ
(xj(w)− kx)dwds

converges in view of hypothesis [H.3] for d > β. To
prove the limit of (Px)(t) we look for a solution of

kx = cTφ(0)+cTA(t0)

∫ t0

t0−τ
(φ(w)− 1kx)dw

+ cT
∫ ∞
t0

Ȧ(s)

∫ s

s−τ
(x(w)− 1kx)dwds

The existence and uniqueness of such kx is guaranteed
by Lemma (4.1) and the first result is proved. Secondly,
we show that supt≥t0−τ e

dt||(Px)(t) − 1kx|| < ∞. We
use the operator P expression as in (5.3) and use the
results right above to get the estimates

||(Px)(t)− 1k(Px)|| = ||(Px)(t)− 1kx|| ≤
≤ ||(Φ(t, t0)− 1cT )φ(0)||+

+

∣∣∣∣∣∣∣∣1cTA(t)

∫ t

t−τ
(x(w)− 1kx)dw

∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣1cT
∫ ∞
t

Ȧ(s)

∫ s

s−τ
(x(w)− 1kx)dwds

∣∣∣∣∣∣∣∣
The first term is bounded as e−γt while the second and
the third term is bounded by e−dt. The expression is
thus bounded in the weighted norm (see definition of
M) if d < γ. This concludes the proof of Proposition
(5.1).

At this point we have proved that the functional
space M is compatible enough for the solutions of the
delayed LTV system and that the associated solution

operator maps M into itself. The final step is to show
that P is a contraction in (M, ρ). To prove this we need
to show that for any x1,x2 ∈M.

ρ((Px1), (Px2)) ≤ αρ(x1,x2)

for some α ∈ [0, 1). To simplify analysis set X12(s) :=(
(x1(s) − 1kx1

) − (x2(s) − 1kx2
)
)
. For t > t0, careful

calculations yield

∣∣∣∣[(Px1)(t)− 1k(Px1)

]
−
[
(Px2)(t)− 1k(Px2)

]∣∣∣∣
=

∣∣∣∣∣∣∣∣−A(t)

∫ t

t−τ
X12(s)ds+

+

∫ t

t0

(
Φ(t, s)− 1cT

)
L(s)A(s)

∫ s

s−τ
X12(w)dwds

+

∫ ∞
t

1cTL(s)A(s)

∫ s

s−τ
X12(w)dwds

+

∫ t

t0

(
Φ(t, s)− 1cT

)
Ȧ(s) ·

∫ s

s−τ
X12(w)dwds

+ 1cT
∫ ∞
t

Ȧ(s) ·
∫ s

s−τ
X12(w)dwds

∣∣∣∣∣∣∣∣

(5.7)

the first term is bounded as follows∣∣∣∣∣∣∣∣A(t)

∫ t

t−τ
X12(s)ds

∣∣∣∣∣∣∣∣ ≤ edτ − 1

d
||A(t)||e−dtρ(x1,x2)

The second and third terms are bounded as follows
(recall [H.4])∣∣∣∣∣∣∣∣ ∫ t

t0

Φ(t, s)L(s)A(s)

∫ s

s−τ
X12(w)dwds

∣∣∣∣∣∣∣∣ ≤∣∣∣∣∣∣∣∣ ∫ t

t0

(
Φ(t, s)− 1cT

)
L(s)A(s)

∫ s

s−τ
X12(w)dwds

∣∣∣∣∣∣∣∣+∣∣∣∣∣∣∣∣ ∫ ∞
t

1cTL(s)A(s)

∫ s

s−τ
X12(w)dwds

∣∣∣∣∣∣∣∣ ≤
Γ
edτ − 1

d(γ − d)
sup
t
|L(t)A(t)|1(1− e−(γ−d)(t−t0))e−dtρ(x1,x2)+

M sup
t
||A(t)|| e

dτ − 1

d(d+ δ)
e−dtρ(x1,x2)

Finally the last two terms in (5.7) are bounded as
follows:∣∣∣∣∣∣∣∣ ∫ t

t0

(
Φ(t, s)− 1cT

)
Ȧ(s) ·

∫ s

s−τ
X12(w)dwds

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣1cT
∫ ∞
t

Ȧ(s) ·
∫ s

s−τ
X12(w)dwds

∣∣∣∣∣∣∣∣ ≤
edτ − 1

d(γ − d)
sup
t
|Ȧ(t)|1Γ(1− e−(γ−d)(t−t0))e−dtρ(x1,x2)

+
edτ−1

d2
||c|| · sup

t
||ḋt||e−dtρ(x1,x2)
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Set A = supt≥t0 ||A(t)||, Ȧ = supt≥t0 ||Ȧ(t)||, L =

supt≥t0 ||L(t)||, Ḋ = supt≥t0 ||ḋt||. Gathering up all
these results we obtain:

ρ((Px1), (Px2)) ≤

edτ − 1

d

(
A

[
1 +

M

d+ δ
+

ΓL

γ − d

]
+

ΓȦ

γ − d +
|c|1Ḋ
d

)
ρ(x1,x2)

Under condition [H.6] the operator P is indeed a
contraction and the Theorem 3.1 is proved.

6 Discussion and concluding remarks

We conclude this paper with some important remarks.

6.1 On the overall approach and the assump-
tions Contrary to a Lyapunov based approach, the
main novelty of this work is the use of Fixed Point
Theory. Our effort was to bypass the main problem
of Lyapunov theory, which is to come up with a good
candidate function. The main advantage of contraction
mappings is that one needs not to worry about it. In-
deed the more asymmetric such a multi-agent system
is the more difficult is the construction of this a Lya-
punov candidate function is even more difficult (if not
impossible) in the case of multi-agent dynamics. In [13]
we discuss the difficulties of approaching (MDL) type of
systems using the Lyapunov method. The system pro-
posed here is of utmost assymetry, both in (time varying
weights) and in the delays. The Fixed Point Argument,
worked but at significant cost, most of it due at assump-
tion [H.6]. It should be noted that the more asymmet-
rical assumptions one makes for the delays, the stronger
(and more restricting) the assumptions get.

6.1.1 Multiple delays The convergence of the fol-
lowing system is discussed in [13]. In case τ is replaced
on (IVP) with τ ij one understands the propagation de-
lay in the exchange of information of agent j to agent
i. One writes

(6.8) ẋ(t) = −L(t)x(t)−
N∑
i=1

∑
j∈Ni

Aji (s)

∫ t

t−τ ij
xj(s)ds

where Aji (t) is the N × N square matrix with ele-
ments en,m = aij(t)δ

i,j
n,m, where δn,mi,j = 1 if and only

if (n = i,m = j). The analysis only requires more
careful algebra in view of the fact that one can take
τ = maxi,j τ

i
j . Other restricting factors is that we essen-

tially exploited the heritage of the undelayed dynamical
system (LTV) and used a very similar space of functions
asking for the assumptions for equivalent behaviour of
(5.2). Perhaps a more suitable choice of M would en-
courage less strict assumptions.

6.1.2 The LTI case In [13] we make a thorough
analysis of the LTI case. The results in this case are
obviously smoother. Not only because assumptions
like [H.3] or [H.5] are obsolete, but because the state
space of the solutions of the undelayed system can be
represented by the elementary linear algebra methods.
So for example γ stands for λ2(L) and ||L|| stands for
λn(L), the second smallest and the largest eigenvalue of
the (time invariant) Laplacian, respectively.

6.2 On the connectivity Assumption [H.1] implic-
itly considers sufficient connectivity conditions among
the agents so that consensus is reached. The overall con-
nectivity assumption is implied in the sense that there
may be failures of communication at times and weights
aij(t) can vanish to zero or even become negative (if that
makes any sense at all), on condition that this happens
in a smooth way so that the overall hypotheses set is
valid certain continuity properties are not violated. In
this case however one needs to consider time varying
neighbourhoods Ni = Ni(t) and this costs more careful
analysis.
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